

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 1 of 13 Rev1.0

R X 3 2 x 6 x x 应 用 笔 记

Bootloader应用指导

文档编号：AN00022

版本：V1.0

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 2 of 13 Rev1.0

目录

1 简介 .. 5

2 结合流程图的 Bootloader原理介绍 ... 6

3 中断向量偏移的必要性 ... 9

4 Boot loader代码配置 .. 9

 中断服务函数说明 .. 10

5 APP代码配置 .. 11

6 实验结果与结论 ... 11

7 版本历史 ... 13

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 3 of 13 Rev1.0

表目录

表 4.1 版本历史 .. 13

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 4 of 13 Rev1.0

图目录

图 2.1 Boot loader原理拆解图 ... 6

图 4.1 RX32S610 系列向量表 ... 11

图 5.1实验结果 .. 12

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 5 of 13 Rev1.0

1 简介

在单片机系统中，bootloader是设备上电/复位后最先执行的一段程序，类似于计算机开机时的
BIOS/UEFI。它的核心作用是：

 硬件初始化：为后续程序运行准备最基础环境（如配置时钟、初始化串口/USB等通信外设等）。

 程序管理：决定是直接运行已有程序（APP），还是通过 IAP（In-Application Programming在
应用编程）机制更新 APP。

 中断向量表适配：保障 APP运行时中断能够正确响应，解决因程序存储地址偏移导致的中断向
量表匹配问题。

本文基于 Cortex-M0内核，RX32S610（64KB Flash / 8KB SRAM）系列芯片为例，简单介绍
bootloader从启动准备到跳转到 APP的工作原理，以便用户参考。

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 6 of 13 Rev1.0

2 结合流程图的 Bootloader原理介绍

闪存物理地址

复位中断
（中断向量表
起始地址）

不可屏蔽
(NMI)

IAP程序main
函数入口

栈顶地址

Reset_Hanlder

NMI_Handler

硬件失效
（HardFault） HardFaultException

Int main(void)

IAP过
程

复位中断
（新中断向量表起始地址）

不可屏蔽中断
向量

Reset_Hanlder

NMI_Handler

硬件失效
（Hard Fault） 所有类型的失效

新程序main函数入口 Int main(void)

中断请求

0x08000000

0x08000004

0x08000800

main函数死循环 触发中断

查找中
断服务
函数

APP起始物理地址
0x08000804

保留

图 2.1 Boot loader原理拆解图

(一) 阶段 1：Boot loader自身启动（地址 0x08000000区）。

1. 物理地址与向量表基础

芯片复位 CPU会从固定 Flash地址 0x08000000取第一条指令。该地址前 4字节是栈顶地
址（为程序运行准备栈空间），紧接着 0x08000004是复位中断向量，指向 Reset_Handler

函数（Bootloader的启动入口）。这一区域还包括其他中断向量（如 NMI不可屏蔽中断、
HardFault硬件错误中断等）构成 Bootloader的中断向量表。CPU响应中断时，会默认到

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 7 of 13 Rev1.0

中断向量表找对应的中断服务函数。

2. Bootloader的main执行逻辑

从 Reset_Handler开始，Bootloader执行自身 int main(void)，初始化必要的外设（如串口
等）。检查“升级标志”（可通过 Fslah特定地址存储的标志位、串口指令等判断）；若需要
升级，进入 IAP流程；若无需升级，直接准备跳转到已有的 APP。

(二) 阶段 2：IAP流程与程序跳转（关键的控制权移交）

1. IAP核心任务：若检测到升级需求，Bootloader会通过通信外设（如串口）接收新 APP固
件数据

2. 擦除旧 APP区：擦除 APP即将存储的 FLASH区域（避免数据冲突）。

3. 写入新固件：将接收的数据通过 FLASH_Program_DoubleDoubleWord按 16字节写入
FLASH，确保新 APP完整存储。

4. APP程序需要进行中断向量偏移：跳转之前操作，中断向量偏移，APP程序的存储地址不
是 0x08000000（根据 boot程序大小做预留，比如设置 APP起始地址是 0x08000800等
自定义地址），这意味着 APP自身的中断向量表也存储在其起始地址（0x08000804是 APP

复位中断向量，其他起始地址以此类推）。如果直接跳转 APP，CPU仍会找到
0x08000004(Bootloader的中断向量表)找中断函数，导致 APP中断响应没有被执行。

5. 对于 ARM Cortex-M0内核和 Cortex-M3/4内核有不同的处理方法。

1) Cortex-M3/4内核：在跳转 APP之前，必须设置 SCB->VTOR寄存器（向量表偏
移寄存器）将其值改为 APP的起始地址（0x08000800）。这样，CPU响应中断
时，会到 APP的中断向量表找中断服务函数，保障中断正确被响应。

2) Cortex-M0内核：可以在 Boot loader和 APP的工程代码中同时定义一个
Bootloader_APP_Location全局变量，在中断服务函数中判断标志位
Bootloader_APP_Location，Bootloader_APP_Location=1执行 Bootloader中断
服务函数，Bootloader_APP_Location=0执行 APP中断服务函数。

6. 跳转实现：完成向量表偏移后还需要：设置栈指针，从 APP起始地址前 4字节（栈顶地
址）初始化栈空间。复位函数：定义函数指针 func_p = (void (*)(void))(*(uint32_t

*)(sysRunningAppAddress + 4))，定义 sysRunningAppAddress是 APP的起始地址
0x08002000，跳转到 APP的 Reset_Handle，正式移交程序控制权。

(三) 阶段 3：APP程序执行（地址 0x08000800区）

1. Cortex-M3/4内核：APP中断向量表接管，因 VTOR已设置 APP起始地址，CPU响应中
断时，会到 APP地址区域找中断向量表：复位中断向量表 0x08000804指向 APP的
Reset_Handle()，其他中断也有对应中断服务函数。APP从 Reset_Handle开始初始化（如
配置复杂的外设、加载业务参数），最终进入 int main(void)运行业务逻辑。当程序运行中触
发中断时，CPU根据 VTOR指向的 APP向量表，调用对应 xxx_Handle函数，实现“中断
触发->服务函数执行->回到主逻辑”的完整流程。

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 8 of 13 Rev1.0

2. Cortex-M0内核：与 Cortex-M3/4内核不同的是，M0内核没有 VTOR寄存器（向量表偏
移寄存器），无法直接配置 APP的起始地址。通过在 Boot loader中断服务函数中设置标志
位 Bootloader_APP_Location用来区分是 APP或 Boot loader所触发的中断。

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 9 of 13 Rev1.0

3 中断向量偏移的必要性

(一) 根本矛盾程序地址与向量表的“绑定关系”。中断向量表与程序起始地址强关联：向量表起始地
址=程序起始地址。若 Boot loader程序在 0x08000000，其向量表就固定在 0x08000004开始
的区域；而 APP程序因存储地址不同（如 0x08002000），向量表自然跟随到 0x08002004。若
不做地址偏移处理，CPU始终认为向量表在 0x08000004，触发中断时错误调用 Boot loader

区的中断函数（甚至因为 Boot loader已跳转，函数可能覆盖/失效），导致系统崩溃。

(二) Cortex-M0内核和和 Cortex-M3/4内核有不同的处理方法，在上文已介绍。

4 Boot loader代码配置

Boot loader对应代码配置。

//在 0x20000100定义一个全局变量

uint32_t Bootloader_APP_Location __attribute__ ((section(".ARM. __at_0x20000100"))) = 1;

//判断是否需要更新 APP数据，1：更新 0：不更新直接跳转

if((UpgradeFALG) == sysUpgradeFlag)

{

//解锁 FLASH

FLASH_Unlock();

//擦除 FLASH，可以根据代码大小擦除扇区

FLASH_Erase_Page(i);

//FLASH编程

FLASH_Program_DoubleDoubleWord(sysRunningAppAddress + i*16, buff);

//FLASH上锁

FLASH_Lock();

//擦除升级标志位所在那一页扇区，需要先解锁

FLASH_Lock();

//擦除升级标志位那一页扇区

FLASH_Erase_Page(i);

//FLASH上锁

FLASH_Lock();

//软件复位

NVIC_SystemReset();

}

else

{

//判断如果不更新，直接跳转 APP，实际工程中延时 4秒再跳转 APP

vRunAPP();

}

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 10 of 13 Rev1.0

 中断服务函数说明

不论是 APP或 Boot loader工程中所触发的中断都需要在 Boot loader的中断服务函数中进行处理，
APP的中断服务函数需要在 Boot loader的对应的中断服务函数下使用函数指针进行跳转。并使用标志
Bootloader_APP_Location来区分是 Boot loader或 APP所触发的中断，Bootloader_APP_Location=1

表示进入 bootloader的中断。Bootloader_APP_Location = 0表示进入 APP的中断。

在工程代码中使用 SysTick_Handler函数进行举例，在 Boot loader工程启用 SysTick定时 1毫秒触
发中断，在中断函数中翻转 PC5端口电平，形成方波信号。在 APP工程也启用 SysTick定时 1毫秒触发
中断，在中断函数中翻转 PC7端口电平，形成方波信号。

Bootloader中断服务函数代码如下所示。

void SysTick_Handler(void)

{

 msTicks++;

//执行 Boot loader中断

 if(Bootloader_APP_Location ==1)

 {

 GPIO_Toggle_Pin(GPIOC,GPIO_PIN_5);

 }

 else

 {

//执行 APP中断

 uint32_t JumpToApp_Address;

 JumpToApp_Address= sysRunningAppAddress +0x3C; //0x3C是 SysTick在中断向量表偏移值

 void(*Jump)(void);

 Jump = (void(*)(void))(*(uint32_t *)(JumpToApp_Address));

 Jump();

 }

}

参考 RX32S610第 10章节，嵌套向量中断控制器（NVIC），可以查看中断优先级以及地址。

需要注意 SysTick_Handler的存储位置，在 Boot loader工程中不需要修改，在 APP工程中需要据
APP代码存储的位置，手动更新 SysTick_Handler在 APP工程中的中断向量表的位置。本例程中 APP起
始地址是 sysRunningAppAddress（sysRunningAppAddress= 0x08000800），加上 0x3C偏移值即可
得到 SysTick_Handler在 APP工程中的中断向量表的位置，其他中断服务函数按照（地址）进行偏移就
可。

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 11 of 13 Rev1.0

图 4.1 RX32S610 系列向量表

5 APP代码配置

在 APP工程同样定义 Bootloader_APP_Location，同样也是在 0x20000100这个位置。在
SysTick_Handler中翻转 PC７端口电平，形成方波信号。

//定义变量

uint32_t Bootloader_APP_Location __attribute__ ((section(".ARM. __at_0x20000100"))) ;

//配置时钟

SetSysClockToHSI_80M();

//配置 SysTick定时操作

SYSTICK_INIT()

GPIO_Toggle();

//APP工程中中断服务函数

void SysTick_Handler(void)

{

 GPIO_Toggle_Pin(GPIOC,GPIO_PIN_7);

}

6 实验结果与结论

按照 4.1小节的描述，通过在 Boot loader的中断服务函数中判断标志位 Bootloader_APP_Location

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 12 of 13 Rev1.0

的值，分别执行 APP和 boot loader中的 SysTick_Handler函数，在每个中断中都执行 IO反转的操作。
本例程代码只举例 SysTick_Handler函数，其他中断服务函数按照相同的方法配置软件代码即可。

1、执行APP中断服务函数触发IO翻转

2、执行Boot loader中断服务函数触发IO翻转

1

2

图 5.1实验结果

https://www.rxtek-icore.com/

RX32x6xx应用笔记

睿兴科技（南京）有限公司
 https://www.rxtek-icore.com Page 13 of 13 Rev1.0

7 版本历史

表 4.1 版本历史

日期 版本 更改内容

2025年 11月 12日 V1.0 初版

https://www.rxtek-icore.com/

	1 简介
	2 结合流程图的Bootloader原理介绍
	3 中断向量偏移的必要性
	4 Boot loader代码配置
	4.1 中断服务函数说明

	5 APP代码配置
	6 实验结果与结论
	7 版本历史

